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Supporting Information 

ABSTRACT: Soybean meal is the dominant protein source in animal feed, but rising costs have encouraged 

the search for alternatives. Canavalia gladiata, a tropical legume with good yield potential and resistance to 

pests, contains about 26% protein. However, its use in non-ruminant diets is constrained by anti-nutritional 

factors. Fermentation with Saccharomyces cerevisiae has been shown to enhance protein content and 

reduce anti-nutrients in various feed ingredients, making it a promising strategy for improving C. gladiata 

seed. The aim of this study was to evaluate the effect of yeast fermentation on C. gladiata seed meal 

proximate composition, bioactive compounds, fatty acid profile and amino acid profile. In this study, raw seed 

meal (RCSM) was prepared from C. gladiata seed grown in Côte d’Ivoire, while fermented seed meal (FCSM) 

was obtained through a two-step aerobic and anaerobic fermentation with yeast. Proximate composition, 

bioactive compounds, antioxidant activity, fatty acid and amino acid profiles were determined using standard 

analytical methods. Fermentation increased dry matter by 4% and crude protein by 23%, while reducing 

carbohydrates and ash. It also enhanced total polyphenols by 11.11% and antioxidant activity by 32.14%, 

though flavonoids decreased slightly and tannin levels increased. Fatty acid profiles showed stability of 

polyunsaturated fatty acid (PUFA) and n-6/n-3 ratios within optimal ranges. Amino acids increased overall, 

with notable rises in several essential amino acids, though lysine, cystine, and glutamic acid declined. Overall, 

yeast fermentation significantly improved the nutritional and bioactive properties of C. gladiata seed meal, 

supporting its potential as an affordable alternative protein source for monogastric animal diets. 

Keywords: Bioactive compounds, Canavalia gladiata, Fermentation, Nutritional value, Yeast. 
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INTRODUCTION   
 

Soybean meal (SBM) remains the primary protein ingredient in animal diets due to its rich protein concentration and 

favorable amino acid composition (Cherdthong et al., 2014; Gunun et al., 2022). However, the recent increase in its 

market price has limited its use in feed formulation, prompting nutritionists to explore more affordable alternative protein 

supplements (Gunun et al., 2022). 

Canavalia gladiata is a leguminous plant that originated in the Asian continent and spread throughout the tropics 

(Sasipriya and Siddhuraju, 2012). Eaten as a green vegetable in Asia, this plant has particular agronomic traits, including 

a high cultivation temperature (Nishizawa and Arii, 2018). They are cultivated on a limited scale throughout Asia, the 

West Indies, Africa and South America (Ekanayake et al., 2006). Moreover, its average yield is comparable to that of the 

soybean, and it is relatively resistant to pests and diseases (Nishizawa and Arii, 2018). Concerning nutritional properties, 

the C. gladiata seed contains approximately 26% protein, 3% fat, and 62% carbohydrate (Sridhar and Seena, 2006; 

Nishizawa and Arii, 2018). But, presence of anti-nutrients limits its use as a feed ingredient for livestock particularly non-

ruminant animals (Sasipriya and Siddhuraju, 2013). 

Yeast (Saccharomyces cerevisiae) has been applied to enhance the nutritional quality of feed ingredients (Polyorach 

et al., 2016; Promkot et al., 2017; Gunun et al., 2022) and to mitigate anti-nutritional compounds present in some 

animal diets (Boonnop et al., 2009). Indeed, Cherdthong and Supapong (2019) reported that cassava waste from 

bioethanol production fermented with yeast had a crude protein content of 25.1% of dry matter, twice that of 

unfermented cassava waste. Also, Gunun et al. (2022) reported that rubber seed kernel contained crude protein at 21.2% 
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of dry matter, while the yeast-fermented rubber seed kernel product contained crude protein at 33.6% of dry matter, an 

increase in crude protein of 12.4 % of dry matter. Moreover, as a food-safe strain (Son et al., 2023; Wang et al., 2024), S. 

cerevisiae plays a pivotal role as a chassis organism for the efficient production of fatty acids and their derivatives (Wang 

et al., 2024). The aim of this study was to evaluate the effect of yeast fermentation on C. gladiata seed meal proximate 

composition, bioactive compounds, fatty acid profile and amino acid profile. 

 

MATERIALS AND METHODS 

 

Production of C. gladiata seeds  

The raw seeds of C. gladiata were produced at the graduate school of agriculture experimental station, at the 

National Polytechnic Institute Felix Houphouet Boigny (INP-HB) in Yamoussoukro, located in central Côte d’Ivoire, from 

April to July 2024. Moreover, the C. gladiata seeds were sun-dried for 5 days after harvest, sorted, and stored in a dry 

environment until use. 

 

Processing methods of RCSM and FCSM 

The raw C. gladiata seed meal (RCSM) was prepared from C. gladiata seed ground using a universal grinder. The 

fermented C. gladiata seed meal (FCSM) was prepared by fermenting the RCSM with commercial dry yeast 

(Saccharomyces cerevisiae). The fermentation process was carried out according to the method reported by Shi et al. 

(2017), with some minor modifications. Each kilogram of seed meal as fermentation substrate was mixed and inoculated 

with one liter of distilled water containing 2% (w/w) dry yeast (Saccharomyces cerevisiae). Aerobic fermentation was 

carried out at 37 C for 24 hours. After the first step, the aerobically fermented mixture was transferred to a vacuum oven 

and then fermented under anaerobic conditions at 37 C for 24 hours. After fermentation, the mixture was oven-dried at 

60 C for 72 hours to obtain FCSM. 

 

Chemical analyses 

Proximate composition of RCSM and FCSM was analyzed using the methods of AOAC (2000). Lipids were extracted 

from samples using the method of Folch et al. (1957). Bioactive compounds were extracted from samples according to 

the hydroalcholic method described by Sinan et al. (2023). The total polyphenols were quantified by the method 

described by Lezoul et al. (2020) and Tiho et al. (2017). The total flavonoids were quantified by aluminium chloride 

colorimetric method described by Tiho et al. (2017). The total tannins were quantified by the Folin-Ciocalteu method 

described by Hossain et al. (2020). The condensed tannins were quantified by the vanillin acid method described by Price 

et al. (1978). The antioxidant activity of samples was measured by the 2,20-azino-bis-3-ethylbenzothiazoline-6-sulfonic 

acid (ABTS*+) radical cation method described by Tiho et al. (2017). Fatty acid profile of RCSM and FCSM was analyzed 

according to the methods described by Koné et al. (2020). Amino acids from RCSM and FCSM were analyzed by acid 

hydrolysis method (AFNOR, 2005). 

 

Statistical analysis 

Raw and fermented C. gladiata seed meals parameters data were subjected to the independent samples t-test at 5% 

significance, using R version 4.5.1 software. 

 
RESULTS AND DISCUSSION 

 
Proximate composition of RCSM and FCSM 

The results of this study showed that fermentation improved the nutritional profile of C. gladiata seed meal, 

particularly in terms of dry matter and crude protein content by 4% and 23%, respectively (Table 1). The increase in dry 

matter content and the decrease in carbohydrate and ash contents observed in the fermented seed meal compared to 

the raw meal is likely due to microbial degradation of soluble carbohydrates and moisture reduction during the 

processing, which has been similarly reported in legume-based substrates (Ojokoh et al., 2013; Arise et al., 2022). 

Moreover, Yang et al. (2018) reported that the crude protein content significantly increased by 12% in fermented soybean 

meal produced by a combination of B. subtilis, L. casei, and yeast, as compared with those in raw soybean meal. 

The increase in crude protein content following fermentation indicates a concentration effect often attributed to the 

microbial breakdown of non-protein components, such as fiber and anti-nutritional factors, as well as the biosynthesis of 

microbial proteins (Hidalgo-Fuentes et al., 2024). This aligns with findings from previous studies on other legumes, where 

solid-state fermentation enhanced the crude protein content of cowpea (Ojokoh et al., 2013) and jack bean (Arise et al., 

2022). 
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Table 1 - Proximate composition of RCSM and FCSM in % of dry matter (DM) 

Proximate composition1 RCSM FCSM SEM p-value 

Dry matter (in % of crude matter) 91.23b 94.89a 0.82 6.67 x 10-6 

Crude Protein 25.62b 30.38a 1.14 6.87 x 10-3 

Ether Extract 4.95 5.09 0.04 1.15 x 10-1 

Crude Fiber 8.28 7.76 0.25 3.51 x 10-1 

Ash 4.24a 3.95b 0.07 6.84 x 10-4 

Total Carbohydrate2 65.19a 60.58b 1.13 4.02 x 10-2 

ME (kcal/kg of dry matter)3 3366.73 3330.01 9.99 4.24 x 10-1 

RCSM: Raw C. gladiata seed meal; FCSM: Fermented C. gladiata seed meal; ME: Metabolizable energy; SEM: Standard error of the mean. 1 

Values are the means of three analyses per sample. 2 Total carbohydrate (Carb_Tot) = 100 - [Protein (% DM) + Fat (% DM) + Ash (% DM)] 

(Tiho et al., 2024); 3 ME (kcal/kg of dry matter) = [2.44 × Protein (% DM) + 8.37 × Fat (% DM) + 3.57 × Carb_Tot (% DM)] ×10 (Tiho et al., 

2024). a,b Parameter means within rows with no common superscript differ (p < 0.05). 

 

Bioactive compounds of RCSM and FCSM 

The fermentation of C. gladiata flour induced an increase in total polyphenol content by 11.11% (Table 2). This 

increase can probably be explained by the release of phenolic compounds bound or their biotransformation into more 

active molecules by microbial enzymes such as tannases and glycosidases (Yang et al., 2023). As polyphenols are major 

antioxidants, this increase could strengthen the antioxidant potential of fermented seed, corroborating several studies on 

fermented vegetables and legumes (Asensio-Grau et al., 2020; Emkani et al., 2022; Knez et al., 2023). The enhancement 

of total polyphenols is consistent with previous findings in fermented legumes such as soybeans and pigeon peas, where 

microbial fermentation has been shown to release bound phenolics from the cell wall matrix or synthesize new bioactive 

compounds (Duenas et al., 2005; Hur et al., 2014). 

Interestingly, a slight decrease in flavonoid content by 7.17% was observed after fermentation. This reduction may be 

attributed to the partial degradation, transformation, or use of certain flavonoids by fermenting microorganisms (Maria 

John et al., 2014; Zhao et al., 2021; Emkani et al., 2022).  

Contrary to the commonly anticipated effects of fermentation (Adebo et al., 2022; Yang et al., 2023; Hidalgo-Fuentes 

et al., 2024), an increase in tannin content was observed in the present study. Similarly, a rise in total tannin levels has 

also been reported during the fermentation of pea protein concentrate (C ̧abuk et al., 2018). This may be explained by 

either the liberation of bound tannins from the seed matrix (C ̧abuk et al., 2018) or the biosynthesis of tannin-like 

phenolics by certain microbial strains during the fermentation process (Emkani et al., 2022). In contrast, condensed 

tannin content remained unchanged, suggesting that these compounds are more chemically stable and less affected by 

fermentation conditions (Makkar, 2003). This finding agrees with previous studies reporting the resilience of condensed 

tannins during biotransformation processes (Francis et al., 2002). 

Finally, the significant enhancement in antioxidant activity by 32.14% following fermentation could be directly linked 

to the observed increases in total polyphenols and tannins. According to Zhao et al. (2021) and Kim et al. (2024), the 

antioxidant activity is positively correlated with yeast fermentation. Both classes of compounds are known to contribute to 

antioxidant capacity through mechanisms such as hydrogen atom donation, metal chelation, and inhibition of lipid 

peroxidation (Shahidi and Ambigaipalan, 2015). This link is well established: these families of compounds contribute 

strongly to free radical scavenging capacities and oxidative stabilization (reduction of oxidative stress) in various 

fermented systems (Zhao et al., 2021; Emkani et al., 2022). This result supports the hypothesis that fermentation could 

be an effective tool to enhance the biofunctional potential of C. gladiata, particularly its antioxidant properties. 

 

Table 2 - Bioactive compounds of RCSM and FCSM 

Bioactive compounds 1 RCSM FCSM SEM P-value 

Total Polyphenols (mg GAE/g of dry matter) 82.21b 91.34a 2.30 1.82 x 10-2 

Total Flavonoids (mg QE/g of dry matter) 52.98a 49.18b 0.90 5.33 x 10-3 

Total tannins (mg TAE/g of dry matter) 0.34b 0.45a 0.02 4.91 x 10-11 

Condensed Tannins (mg CatE/g of dry matter) 0.08 0.07 0.01 4.60 x 10-1 

Antioxidant Activity (μmol TE/g of dry matter) 0.56b 0.74a 0.04 1.35 x 10-8 

RCSM: Raw C. gladiata seed meal; FCSM: Fermented C. gladiata seed meal; GAE: Gallic acid equivalent; QE: Quercetin equivalent; TAE: Tannic 

acid equivalent; CatE: Catechin equivalent; TE: Trolox equivalent; SEM: Standard error of the mean. 1 Values are the means of three analyses 

per sample. a,b Parameter means within rows with no common superscript differ (p < 0.05). 
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Fatty acid (FA) profile of RCSM and FCSM 

The unsaturated fatty acids (74.81% and 71.88%, respectively for raw and fermented seed meal) were more 

abundant in C. gladiata seed oil than saturated fatty acids (25.17% and 28.53%, respectively for raw and fermented seed 

meal) (Table 3). These results confirm those of Qian et al. (2025), who reported that C. gladiata seed oil contained 69.1 to 

81.8% unsaturated fatty acids and 18.2 to 30.9% saturated fatty acids. The fermentation of C. gladiata resulted in a 

decrease in unsaturated fatty acids by 3.92%, and an increase in saturated fatty acids (SFA) by (13.35%), notably palmitic 

acid (8.31%) and stearic acid (53.58%). This development is consistent with several recent studies that report that 

fermentation of food breaks down nutrients, including proteins associated with allergic reactions, making them easily 

digestible, and it also creates beneficial nutrients, including fatty acids (Borresen et al., 2012; Song et al., 2013; Kim et 

al., 2015). Saccharomyces cerevisiae plays a role in food production and also exhibits fatty acid composition changes 

depending on its environment and growth conditions (Son et al., 2023). The yeast can synthesize fatty acids, particularly 

saturated fatty acids like palmitic acid (16:0), and unsaturated fatty acids like oleic acid (18:1), with the latter’s synthesis 

influenced by oxygen availability (Wang et al., 2024). 

In contrast, the balance between polyunsaturated fatty acid (PUFA) contents, notably C18: 2n-6 and C18: 3n-3, were 

little affected by fermentation, as indicated by the relative stability of the C18: 2n-6/C18: 3n-3 and n-6/n-3 ratios, 

increasing respectively from 1.89 to 2.01 and from 1.89 to 1.98. The C18:2n-6/C18:3n-3 ratio is considered balanced, 

particularly in animal feed, when it is less than 4 as recommended by ANSES (2011) and Simopoulos (2016) to optimize 

the immune response. Simopoulos and Di-Nicolantonio (2016) concluded that n-3 fatty acids participate to a decrease 

adipose tissue development and lead to weight loss, while n-6 fatty acids increase adipose tissue synthesis and lead to 

obesity. After examining various effects of n-6/n-3 ratios on experimental animals, Simopoulos and Di-Nicolantonio 

(2016) indicated that the preferred ratio for an optimal health could be 1:1 or 2:1. This n-6/n-3 ratio interval 1:1 to 2:1 

was increased, and set to be optimal between 1:1 and 5:1 according to Gonzalez-Becerra et al. (2023). Anyhow, high n-

6/n-3 ratios between 10:1 and 20:1 should be stickily avoided, because they increase the risk of inflammatory diseases 

and obesity (Simopoulos and Di-Nicolantonio, 2016; Gonzalez-Becerra et al., 2023). 

 

Table 3 - Fatty acid profile of RCSM and FCSM in % of total fatty acid. 

Fatty acid 1 RCSM FCSM SEM P-value 

Myristic acid, C14:0 0.51a 0.45b 0.02 2.13 × 10-2 

Pentadecanoic acid, C15:0 0.60 0.62 0.02 6.50 x 10-1 

Palmitic acid, C16:0 17.70b 19.17a 0.36 1.08 x 10-2 

Stearic acid, C18:0 2.93b 4.95a 0.45 6.52 x 10-6 

Arachidic acid, C20:0 0.87 0.83 0.03 5.23 x 10-1 

Behenic acid, C22:0 0.43 0.38 0.02 1.11 x 10-1 

Tricosanoic acid, C23:0 0.21 0.20 0.00 7.05 x 10-2 

Lignoceric acid, C24:0 1.50 1.47 0.02 4.10 x 10-1 

Hyenic acid, C25:0 0.42b 0.46a 0.01 2.19 x 10-3 

Total of saturated fatty acids (SFA) 25.17b 28.53a 0.79 4.45 x 10-3 

9-hexadecenoic acid, C16:1 n-9 0.18b 0.22a 0.01 6.08 x 10-4 

Palmitoleic acid, C16:1 n-7 1.62b 3.68a 0.46 3.03 x 10-5 

Oleic acid, C18:1 n-9 43.81a 39.97b 0.90 2.56 x 10-3 

Cis-vaccenic acid, C18:1 n-7 2.95 2.84 0.03 5.44 x 10-2 

Gondoic acid, C20:1 n-9 0.75 0.69 0.02 2.16 x 10-1 

Total of monounsaturated fatty acids (MUFA) 49.92 48.01 0.56 7.74 x 10-2 

Linoleic acid, C18:2 n-6 16.23a 15.40b 0.22 2.76 x 10-2 

Arachidonic acid, C20:4 n-6 0b 0.23a 0.05 6.30 x 10-4 

Total of n-6 FA 16.23 15.63 0.17 7.37 x 10-2 

Linolenic acid, C18:3 n-3 8.61a 7.77b 0.20 6.77 x 10-3 

Total of polyunsaturated fatty acids (PUFA) 24.89a 23.47b 0.37 2.57 x 10-2 

Total of unsaturated fatty acids (UFA) 74.81a 71.48b 0.72 4.99 x 10-2 

PUFA/MUFA 0.50 0.49 0.01 6.17 x 10-2 

UFA/SFA 2.9a 2.5b 0.10 6.75 x 10-4 

C18:2 n-6/C18:3 n-3 1.89b 2.01a 0.02 4.87 x 10-3 

n-6/n-3 1.89b 1.98a 0.03 5.30 x 10-3 

RCSM: Raw C. gladiata seed meal; FCSM: Fermented C. gladiata seed meal; FA: Fatty acid; SFA: Sum of saturated fatty acids; MUFA: Sum of 

monounsaturated fatty acids; PUFA: Sum of polyunsaturated fatty acids; UFA: Sum of unsaturated fatty acids; n-6/n-3: Sum of n-6 fatty 

acids/sum of n-3 fatty acids ratio; SEM: Standard error of the mean. 1 Values are the means of three analyses per sample. a,b Parameter 

means within rows with no common superscript differ (p < 0.05). 
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Amino acid (AA) profile of RCSM and FCSM 

The quantity of AAs was much higher in fermented C. gladiata seed meal with S. cerevisiae than in raw C. gladiata 

seed meal (93.36 vs 87.52 g for 100 g of protein, respectively) (Table 4). Fermentation, one of the earliest techniques for 

preserving perishable foods, also enhances their nutritional quality by increasing amino acid levels (Elhalis et al., 2023; 

Yang et al., 2024). Additionally, the fermentation of food breaks down nutrients, including proteins associated with 

allergic reactions, making them easily digestible, and it also creates beneficial nutrients, including amino acids (Borresen 

et al., 2012; Song et al., 2013; Kim et al., 2015). The present study confirmed increases in several essential AAs and non-

essential AAs in the FCSM, when compared with the RCSM. In fact, all AAs increased by 4.36% to 15.04% in fermented C. 

gladiata seed meal, excepted, the contents of lysine, cystine and glutamic acid that decreased respectively by 8.74%, 

19.33% and 2.84%. Moreover, Kim et al. (2015) showed that the amounts of essential amino acids and non-essential 

amino acids were little increased respectively by 1.98% and 3.98% in fermented C. gladiata with 3% A. oryzae at 25  2 

C and 55  5% at ambient humidity for 36 h and dried. Also, Yang et al. (2018) indicated that total amino acid contents 

significantly increased by 5% in fermented soybean meal produced by a combination of B. subtilis, Lactobacillus casei, 

and yeast, as compared with those in soybean meal. In addition, the contents of phenylalanine, valine, and methionine 

were increased by 9-42% after fermentation. The increase in the content of sweet amino acids such as glycine and 

alanine after fermentation could increase the fermented C. gladiata seed meal in sweetness (Yang et al., 2024). 

 

Table 4 - Amino acid profile of RCSM and FCSM in g/100 g protein 

Amino acid RCSM FCSM SEM p-value 

Arginine 5.50b 6.04a 0.12 2.51 x 10-5 

Histidine 3.06b 3.44a 0.09 1.49 x 10-3 

Isoleucine 4.02b 4.57a 0.12 1.76 x 10-4 

Leucine 7.65b 8.41a 0.17 7.41 x 10-4 

Lysine 6.18a 5.64b 0.14 2.13 x 10-2 

Methionine 0.96b 1.13a 0.04 2.56 x 10-2 

Phenylalanine 4.71b 5.08a 0.09 1.46 x 10-2 

Serine 5.39b 5.98a 0.14 3.83 x 10-3 

Threonine 4.53b 4.97a 0.10 1.53 x 10-3 

Tryptophan 1.08 1.13 0.03 4.87 x 10-1 

Valine 4.65b 5.31a 0.15 8.56 x 10-5 

Total of essential AAs 47.73b 51.70a 0.95 5.91 x 10-3 

Alanine 4.65b 5.08a 0.10 4.60 x 10-4 

Aspartic acid 11.17b 11.91a 0.17 1.12 x 10-4 

Cystine 1.19a 0.96b 0.05 2.14 x 10-3 

Glutamic acid 11.62a 11.29b 0.07 1.76 x 10-4 

Glycine 3.97b 4.57a 0.14 4.66 x 10-4 

Proline 3.68b 4.18a 0.12 1.57 x 10-3 

Tyrosine  3.51 3.67 0.06 1.88 x 10-1 

Total of non-essential AAs 39.79b 41.66a 0.45 7.09 x 10-3 
RCSM: Raw C. gladiata seed meal; FCSM: Fermented C. gladiata seed meal; AAs: Amino acids; SEM: Standard error of the mean. 1 Values are 

the means of three analyses per sample. a,b Parameter means within rows with no common superscript differ (p < 0.05). 

 
CONCLUSION 
 

To our knowledge, the fermentation of C. gladiata seed meal with yeast (Saccharomyces cerevisiae) has not been 

previously reported. The results of this study indicate that yeast fermentation could be an effective biotransformation 

approach for enhancing the protein quality and amino acid bioavailability of C. gladiata seed meal, thereby making its 

nutritional profile more competitive. Yeast-based fermentation appears to be a promising method for improving the 

bioactive potential of C. gladiata seeds. Consequently, the rise in bioactive compounds may positively influence the 

functional properties of the fermented seed meal, particularly with regard to shelf-life extension and gut health in animal 

feeding applications. This shows its potential as a value-added alternative protein source for monogastric animal diets. 

 
DECLARATIONS 

 

Corresponding author 

Correspondence and requests for materials should be addressed to Gningnini Alain Koné; E-mail: 

alain.kone@inphb.ci; ORCID: https://orcid.org/0000-0002-5143-3311 

 

Data availability  

The datasets used and/or analysed during the current study available from the corresponding author on reasonable 

request.  

mailto:alain.kone@inphb.ci


Online J. Anim. Feed Res., 16(1): 33-40. 

 

 

38 

Authors’ contribution 

Gningnini Alain Koné designed the study, contributed to data analysis and manuscript writing, and coordinated the 

contributions of all other authors; N'Da Amani Sylvère Bertrand Koko and Konan Raphaël N'Guessan contributed to study 

design, data collection, and manuscript writing; Faustin Parfait Koutouan designed the study and manuscript writing; 

Maryline Kouba contributed to the study design and critical revision of the manuscript, as well as to the analysis of the 

samples. 

 

Ethical regulations  

Not applicable. 

 

Acknowledgements  

The authors gratefully thank Pr. Vincent Rioux and Benjamin Regent of Institut Agro Rennes-Angers for their helpful 

in analyzing the amino acid and fatty acid profiles of samples. 

 

Funding  

The authors declare that no funds, grants, or other support were received during the preparation or publication of this 

manuscript. 

 

Competing interests  

The authors declare no competing interests in this research and publication.  

 
Abbreviations 

SBM: Soy Bean Meal; INP-HB: National Polytechnic Institute Felix Houphouet Boigny; RCSM: Raw C. gladiata Seed Meal; 

FCSM: Fermented C. gladiata Seed Meal;  AAs: Amino Acids.; CP: Crude Protein; AOAC: Association of Official Analytical 

Chemists; GAE: Gallic Acid Equivalent; QE: Quercetin Equivalent; TAE: Tannic Acid Equivalent; CatE: Catechin Equivalent; TE: 

Trolox Equivalent; ABTS: 2,20-azino-bis-3-ethylbenzothiazoline-6-sulfonic acid; Abs: Absorbance; DF: Dilution Factor; AFNOR: 

French Association for Standardization; ISO: International Organization for Standardization; ANSES: French Agency for Food, 

Environmental and Occupational Health & Safety; ME: Metabolizable Energy; FAO: Food and Agricultural Organization of the 

United Nations; DM: Dry Matter; FA: Fatty acid; SFA: Sum of Saturated Fatty Acids; MUFA: Sum of Monounsaturated Fatty Acids; 

PUFA: Sum of Polyunsaturated Fatty Acids; UFA: Sum of Unsaturated Fatty Acids; SEM: Standard error of the mean. 
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