PHYLOGENETIC IDENTIFICATION OF *Anaplasma phagocytophilum* IN HORSES IN BAGHDAD, IRAQ

Ahmed Noaman ALANI\(^{1,2,3} \), and Afaf Abdulrahman YOUSIF\(^{1,2} \)

Department of Internal and Preventive Veterinary Medicine, University of Baghdad, 28601 AlDawoodi, Iraq

\(^{1}\)Email: ahmedana1977@csvm.uobaghdad.edu.iq

\(^{2}\)Supporting Information

ABSTRACT: This study aimed to detect *Anaplasma phagocytophilum* in horses through hematological and molecular tests. The 16S rRNA gene of the *Anaplasma phagocytophilum* parasite was amplified by polymerase chain reaction (PCR), then sequenced, and subjected to phylogenetic analysis to explore "Equine Granulocytic Anaplasmosis" (EGA) infection in three important gathering race horses areas in Baghdad governorate, Iraq. Blood samples were obtained from 160 horses of varying ages, three breeds, and both sexes, between January and December 2021. Prevalence and risk variables for anaplasmosis were analyzed using statistical odds ratio and chi-square tests. Results demonstrated that clinical anaplasmosis symptoms comprised jaundice, weight loss, paleness of mucus membrane with petechial hemorrhage in the third elides, and edema in extremities; There was no tick infestation. The hematological test did not significantly reveal decreases in red and white blood cells and platelet count. Microscopically found 11 from 160 smears (6.88%) had morulae within granulocytes, PCR results of *Anaplasma spp* primers was 32 positive amplicons (20%), and molecular sequencing results of "16S ribosomal RNA genes" confirmed 21 horses (13.13%) infected by *Anaplasma phagocytophilum* during the first time in Iraq horses. The results of the phylogenetic analysis revealed compatibility values similarity 98.81-99.76% with worldwide isolates. Mares occurred not significantly riskier; also age and breed were not illustrated risks of any group. This study is the first molecular detection of *Anaplasma phagocytophilum* in racehorses reared in Baghdad in Iraq. The outcomes of this study provide genetic data for early identification of *Anaplasma phagocytophilum* infection, treatment, and management of the illness in Iraq horses, as well as monitoring its transmission to the human population.

Keywords: *Anaplasma phagocytophilum*, Genetic, Mares, Phylogenetic analysis, Sequencing.

INTRODUCTION

Horses (*Equus caballus*) are vulnerable to tick-borne infections, the most serious of which is *Anaplasma phagocytophilum*-induced "Equine Granulocytic Anaplasmosis (EGA)" (Hurtado et al., 2020; Laamari et al., 2020). It is a zoonotic illness that is responsible for "human granulocytic anaplasmosis" (Oğuz and Değer, 2021). It also infects equines, canines, and cattle (Hamidinejat et al., 2019), “A small ruminant Fever” (goats and sheep) (Akteş et al., 2021), a wild deer (Kawahara et al., 2006), and rodents (Noaman, 2019). Many studies in Iraq diagnosed anaplasmosis by clinical, hematological and molecular methods, it has been found in sheep (Hamzah and Hasso, 2019), dogs (Al-Obaidi et al., 2020), as well as horses in Mosul city (Albadrani and Al-Iraqi, 2019), EGA in Baghdad city horses has not been confirmed via molecular or phylogenetic approaches.

Over a 28-year period, Saleem et al. (2018a) mapped the worldwide distribution of EGA and determined endemic zones. PCR technique confirmed in the United States of America (Subbiah et al., 2021; Thompson et al., 2022), in Europe (Dziegieł et al., 2013; Janzén et al., 2019), in Turkey (Oğuz, 2021), and in Iran (Noaman, 2019). Globally, ticks infest a wide variety of animal species and spread numerous illnesses, such as EGA (Narankhajid et al., 2018), Alali et al. (2022) documented distributed ticks in Iraq that transport different diseases including anaplasmosis. *Anaplasma phagocytophilum* is transmitted by ixodidae hard ticks and proliferates in tick tissues and salivary glands (Boulanger et al., 2019). The bacterium travels transstadially but not transovarially, allowing transfer to vertebrate hosts via biting (Noaman, 2019). In animals' blood, it predominantly targets granulocytes, mainly neutrophils and eosinophils (Nelson et al., 2020), and forms morulae inside those cells, which may be utilized as a diagnostic tool for EGA identification, but “polymerase chain reaction” is the gold standard (Saleem et al., 2018b). Transplacental transmission in horses was documented (Dixon and Bedenice, 2021).

The novel species *Anaplasma phagocytophilum* comprises the old species "*Ehrlichia phagocytophila, E. equi*, and the pathogen of Human Granulocytic *Ehrlichiosis (HGE)*" (Dumier et al., 2001). It is a strict gram-negative, intracellular bacteria, and the microorganism is biologically linked to Rickettsia (Guzman et al., 2022), "Equine Granulocytic Anaplasmosis" is generally a transitory illness (Guet et al., 2021), and Ordinarily in horses, self-limitation (Salvagni et al., 2010). Clinical symptoms differ from horse to horse, with the acute cases displaying pyrexia, depression, lethargy, inappetence (Sim et al., 2017), eyelid petechial hemorrhages, icterus, ventral edema, and...
death in severe cases (Salvagni et al., 2010), and less frequently, associated neurological manifestations are seen as ataxia, stiffness, and lying down (Gussmann et al., 2014; Nowicka et al., 2022). Hematological testing revealed thrombocytopenia, anemia (Albadri and Al-Iraqi, 2019), and leukopenia (lymphopenia and neutropenia) can put the animal at risk of developing further infections (Saleem et al., 2018a).

There has been a lack of research on these illnesses in horses, therefore only little is known regarding their occurrence (Tsachev et al., 2019), and the zoonotic feature of it makes it need to monitoring of equestrian groups (Ebani, 2019), especially the duration of equine parasitemia averages just 129 days (Costa et al., 2021), as well as the diagnosis Anaplasma phagocytophilum in horses are required for the development of successful disease control strategies to avoid illness spread and possibly transfer to people (Seo et al., 2018). The purpose of this research would be to use nucleotide sequencing and phylogenetic analysis to investigate how prevalent Anaplasma phagocytophilum is in Baghdad horses.

MATERIALS AND METHODS

Ethical approval

Approval for this study was obtained from the committee of College of Veterinary Medicine/ University of Baghdad, Iraq. Number 39/PG on 7/1/2021.

Animal groups and clinical examination

In the period between January and December of 2021 (with the exception of May and June, due to the coronavirus situation), 160 racehorses (60 Arabian, 75 Crossbreds, and 25 Thoroughbreds) were examined at three important equestrian facilities in Baghdad city. Iraqi Equestrian School, Alzwwaa Zoo, and Alameria Equestrian Club. There were approximately ninety-one mares and sixty-nine stallions in the study, with an estimated age range of 2–25 years (Khazaeeel et al., 2022). The clinical signs of animals were recorded, respiratory and heart rate, and rectal temperature, with other signs, were checked on each horse.

Samples

Blood samples from studied horses were taken from the jugular vein and divided between a couple of three milliliters vacutainer tubes containing EDTA anticoagulant; one tube was utilized for Microscopic examination on slides, hematological investigation, and the other tube was stored in a freezer for PCR technique.

Microscopic examination

Microscopic observation of blood films for detection of A. phagocytophilum morulae inside granulocytes was done according to Kerr (2008).

Molecular genetic assay

To isolate genomic DNA from horse blood, a kit called “Promega, USA, ReliaPrepTM Blood gDNA Miniprep System” was used (Voytas, 2001; Badawi and Yousif, 2020). Purity and concentration of DNA measured using a NanoDrop (made by “Thermo Fisher Scientific Corporation, USA”) were found to be between 1.6 and 1.9 at 260/280 nm following the manufacturer's recommendations (Desjardins and Conklin, 2010).

PCR protocol

For polymerase chain reaction, researchers employed a pair of primers derived from “the 16S ribosomal RNA genes” were used for the detection of Anaplasma spp in length 1469 bp that are EC9 forward “5’ TACCTGGTTACGACTT 3’” and EC12 reverse “5’ TGATCCGTGCTCAGAACGAACG 3’” (Kawahara et al., 2006).

Guidelines from Promega Corporation (2018) state that the volume of PCR reaction 25µl should contain 12.5µl of “(Promega, USA, 2X GoTaq® Green Master Mix) that consist of Buffer (pH 8.5), 3 mM MgCl2, a mixture of 400 M each of dATP, dTTP, dCTP, and dGTP, and 50 units/mL of Taq DNA polymerase”, with 7.5µl of nuclease-free water. Three microliters of template DNA, one micro-liter of each Anaplasma spp primers previously described in 10 pmol concentration.

A thermocycling protocol begins with initial denaturation with a ten-minute heat-up to 94°C, followed by forty cycles (denaturation via forty seconds heat-ups at 94°C and annealing at 51.5°C, extension for thirty seconds heat-ups at 72°C, final extension with a ten-minute of 72°C), and holding at 4°C for a few hours. After being electrophoresed on agarose gel (1.5% concentration) using “(Promega, USA, DiamondTM Nucleic Acid Dye)”, amplified DNA fragments were most easily seen under UV light (Green and Sambrook, 2019).

Sequencing, phylogenetic analyses

The 16S rRNA gene of Anaplasma spp was sequenced by (Macrogen lab, Korea) using EC9 and EC12 primers; the results were analyzed using BLAST of the NCBI database [http://www.ncbi.nlm.nih.gov/BLAST] (Hall, 1999), and recorded in international Gene bank as Iraqi reference attainment number. The “Molecular Evolutionary Genetics Analysis (MEGA 11)” program was used to construct phylogenetic trees, it was then contrasted with information on the same gene derived from sequencing projects throughout the world (Tamura et al., 2013).
Hematological examinations
Includes leukocytes count, the estimate of thrombocytes, and, the counting of erythrocytes, measuring hemoglobin and hematocrit, and assessing anemia morphologically (based on the Wintrobe Index) (Walton and Lawson, 2021).

Analytical statistics
Significant Results (at levels p: 0.05) suggest a possible risk of infection, as determined by statistical analysis using the application “Statistical Package for the Social Sciences (SPSS) version 26.0 (IBM Corp., Chicago, USA)” (Bluman, 2012).

RESULTS

Microscopic examination
Microscopic examination revealed *A. phagocytophilum* morulae inside granulocytes were observed microscopically in eleven horses (6.875%) mostly in neutrophils as large rounded intra-cytoplasmic inclusion bodies after Romanowsky_stained blood smears (Figure 1).

Molecular study
The first stage of the Molecular study depend on “the 16S ribosomal RNA genes” PCR results of *Anaplasma spp* primers, it recorded 32 positive amplicons (20%) for *Anaplasma* species from 160 studying horse blood samples (Figure 2). Then sequenced for “16S ribosomal RNA” genes and BLAST results to recorded in “the National Center for Biotechnology Information (NCBI) Gene bank” which confirmed only 21 samples (13.125%) had positive *Anaplasma phagocytophilum* for the first time in horses in Baghdad, under accessions numbers: ON872233.1 to ON872235.1, ON872238.1 to ON872241.1, ON872243.1 to ON872246.1 to ON872248.1, and OP218075.1 to OP218086.1. There was no significant association between microscopic and molecular results, chi-square(X2) = 3.472222; df = 1; P value = 0.062407; (P ≤ 0.05). The phylogenetic tree in figure 3 showed these isolates had the highest similarity 98.81-99.76% sequence identity to isolates from Japan, China, Taiwan, dogs in Iraq, Belarus, Estonia, South Africa, Norway, Turkey, Austria, Russia, Sweden, South Korea, and Croatia, with 99-100% site coverage.

![Figure 1](image-url) **Figure 1**- Horse blood with Intra-cytoplasmic inclusion bodies of *Anaplasma phagocytophilum*. A, C, and D: single large rounded (morulae) inside neutrophils, B: double large rounded (morulae) inside neutrophils. X100, Romanowsky_stained blood smears.

![Figure 3](image-url) **Figure 3**- Phylogenetic tree showing the relationship between the isolate and other isolates from different countries.

Clinical signs of affected horse with *A. phagocytophilum*

The clinical symptoms of 21 affected horses were documented in Table 1 such as jaundice as the major signs occurred, weight loss, paleness of mucus membrane with petechial hemorrhage in the third eyelids Figure 4, and edema in extremities. All horses revealed normal temperature ranged from 37.1 - 38.3°C on average 37.66°C. Nonetheless, there was a remarkable rise in the means of heart rate (40.05) (30-54 beats per minute), and respiratory rate was 17.9 (14-30 breath per minute).
Figure 4 - Horse suffered paleness of mucus membrane with petechial hemorrhage in the third eyelids.

Hematological study

Table 2 showed non-significant differences between three parameters red, white blood cells, and platelets count in the 21 infected horses with *A. phagocytophilum* in comparison to 139 non-affected horses. Anemia occurred in five of the 21 horses infected with *Anaplasma phagocytophilum*, and was classified as (one macrocytic hypochromic and four Normocytic normochromic), leukopenia occurred in one case, and no thrombocytopenia was discovered.

Rate of infection according to predisposing factors

Anaplasma phagocytophilum infection demonstrated predisposing factors in Baghdad racehorses Table 3. Mares are more infected but without significant differences (1.2708 odds ratios) than stallions 13 and 8, respectively. Arabian and crossbred horses had equal susceptibility (13.33%) to infection and a non-significant (1.1282 odds ratio) than Thoroughbred horses (12%). Four years old horses had the highest percentage of infection (18.75%) and four folded (4.8462 odds ratio) than young horses in their second year, who had the lowest percentage of infection (4.55%), but were statistically insignificant.

Table 1 - Clinical signs related to infection with *Anaplasma phagocytophilum*

<table>
<thead>
<tr>
<th>Clinical sings</th>
<th>Affected horses with Anaplasma phagocytophilum (21) (No.)</th>
<th>%</th>
<th>Affected horses with Anaplasma phagocytophilum (21) (No.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Extremities edema</td>
<td>(1)</td>
<td>4.76%</td>
<td>(2)</td>
</tr>
<tr>
<td>jaundice</td>
<td>(6)</td>
<td>28.57%</td>
<td>(3)</td>
</tr>
<tr>
<td>Pale Mucus Membrane</td>
<td>(2)</td>
<td>9.52%</td>
<td>(1)</td>
</tr>
<tr>
<td>jaundice</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pale Mucus Membrane</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 2 - Erythrocytes, leukocytes, and thrombocytes counts in molecular positive and molecular negative horses.

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Values in</th>
<th>Horses affected with Anaplasma phagocytophilum (21)</th>
<th>non affected horses (139)</th>
</tr>
</thead>
<tbody>
<tr>
<td>RBCs count (1012/L)</td>
<td>8.89+0.475 (4.9 - 12.9)</td>
<td>9.182 +0.175 (4.99 - 13.41)</td>
<td></td>
</tr>
<tr>
<td>Platelets count (109/L)</td>
<td>260.05+15.324 (145 - 389)</td>
<td>278.91+7.071 (128 - 642)</td>
<td></td>
</tr>
<tr>
<td>Total WBC count (109/L)</td>
<td>10.498 +0.649 (5.25 – 17.3)</td>
<td>11.17 +0.294 (5 – 25.4)</td>
<td></td>
</tr>
</tbody>
</table>

Table 3 - Predisposition of race horses breeds, sex, and age to infected by *Anaplasma phagocytophilum*.

<table>
<thead>
<tr>
<th>Factor</th>
<th>Total Horses (160)</th>
<th>Number of infected horses (21)</th>
<th>%</th>
<th>(Odds Ratio)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Confidence</td>
</tr>
<tr>
<td>Sex</td>
<td>Stallions</td>
<td>69</td>
<td>8</td>
<td>11.59%</td>
</tr>
<tr>
<td></td>
<td>Mares</td>
<td>91</td>
<td>13</td>
<td>14.29%</td>
</tr>
<tr>
<td>Breed</td>
<td>Arabian Horses</td>
<td>60</td>
<td>8</td>
<td>13.33%</td>
</tr>
<tr>
<td></td>
<td>Thoroughbred</td>
<td>25</td>
<td>3</td>
<td>12.7%</td>
</tr>
<tr>
<td></td>
<td>Crossbreds</td>
<td>75</td>
<td>10</td>
<td>13.33%</td>
</tr>
<tr>
<td>Age</td>
<td>2 years</td>
<td>22</td>
<td>1</td>
<td>4.55%</td>
</tr>
<tr>
<td></td>
<td>3 years</td>
<td>24</td>
<td>4</td>
<td>16.67%</td>
</tr>
<tr>
<td></td>
<td>4 years</td>
<td>32</td>
<td>6</td>
<td>18.75%</td>
</tr>
<tr>
<td></td>
<td>5 years</td>
<td>25</td>
<td>3</td>
<td>12%</td>
</tr>
<tr>
<td></td>
<td>6-10 years</td>
<td>34</td>
<td>5</td>
<td>14.71%</td>
</tr>
<tr>
<td></td>
<td><11 years</td>
<td>23</td>
<td>2</td>
<td>8.7%</td>
</tr>
</tbody>
</table>
DISCUSSION

Microscopic examination of Romanowsky-stained blood smears from 11 horses (6.88%) revealed the presence of *Anaplasma phagocytophilum* morulae within granulocytes (often in neutrophils) as large, round inclusion bodies inside the cytoplasm. It was equivalent to the results of 7.26% in the Europe study and 0% morulae in Chile (Dziegieł et al., 2013; Hurtado et al., 2020), in contrast, a higher percentage of 28.9% in Mosul City Iraq (Alabdadi and Al-Iraqi, 2019). First time in horses in Baghdad, Sequenced the positive 16S rRNA gene samples and BLAST it in the NCBI database to confirmed the detection of *Anaplasma phagocytophilum* in horses, with (99-100% site coverage) 98.81-99.76% identity to (AB196721) Japan (Kawahara et al., 2006), (KF569915) China, (OL690558) Taiwan, (MN227385) dogs in Iraq (Al-Obaidi et al., 2020), (HQ629914) Belarus (Katargina et al., 2012), (MW922756) Estonia (Vikentjeva et al., 2021), (MK814406) South Africa (Kolo et al., 2020), (CP015376) Norway (Crosby et al., 2022), (KP745629) Turkey (Aktas and Ozubek, 2015), (JX173652) Austria (Dyachenko et al., 2013), (HQ629917) Russia (Katargina et al., 2012), (AY527213) Sweden (Franzén et al., 2005), (KR611718) South Korea (Oh et al., 2012), (KY114936) Croatia (Huber et al., 2017) isolates.

Microscopic findings of *Anaplasma phagocytophilum* were around half times as confirmed by molecular sequencing results (21 horses, 13.13%) but this was not statistically significant, this molecular dominant agreed with 17.9% in the Europe study and 13.6% in Chile (Dziegieł et al., 2013; Hurtado et al., 2020), Baghdad’s sequencing results nearly resampled other study results as 13% in Tunisia (Mghirbi et al., 2012), 7% in Pennsylvania (Thompson et al., 2022), 6.4% in Turkey (Öğüz, 2021), but higher than 1.8% in Poland (Teodorowski et al., 2021), and lower than 45% in Brazil (Salvagni et al., 2010). This illustrated the stability of molecular technique results that make it a better tool to diagnose *Anaplasma phagocytophilum* and disparity in microscopic results may due to differences in laboratory protocols and/or the presence of morulae related to another nonpathogenic *Anaplasma* spp.

This study of 21 molecular-positive horses for *A. phagocytophilum* revealed different symptoms, jaundice, and emaciation, only two cases had pale and petechial hemorrhages in 3rd eyelids, non-significant increased heart rates, nonspecific singes or asymptomatic infections this resemble the results of (Fielding et al., 2018) and (Ebaní, 2019), on other hand affected horses with Anaplasmosis located in horses in Mosul city Iraq revealed fever, depression, and ataxia in addition to the signs (Alabdadi and Al-Iraqi, 2019), and the same signs in horses located in united states (Subbiah et al., 2021). Ticks infestation was recorded in most research but not detected in these molecular-positive horses, this agreed with some studies in Algeria, Chile and Turkey (Hurtado et al., 2020; Laamari et al., 2020; Öğüz, 2021), the intense care with racehorses as daily washing and grooming may lead to the disappearance of a tick, and periodic medical checks prevent the development of severe signs in this investigation.

Hematological data demonstrated that 21 Molecular Positive *Anaplasma phagocytophilum* horses had a low average of Red, White, and platelet cell counts, with no significant changes compared to 139 Molecular Negative horses, One horse had macrocytic hypochromic anemia, whereas four horses had normocytic normochromic anemia; one had leukopenia, and none had thrombocytopenia. Similar CBC count average results were recorded in horses affected with *Anaplasma phagocytophilum* in Chile and Pakistan (Saleem, et al., 2018b; Hurtado et al., 2020), in divergence Mosul horses established anemia; leukopenia and thrombocytopenia (Alabdadi and Al-Iraqi, 2019), in addition, Croatia (Gotič et al., 2017), Others found leukopenia and thrombocytopenia (Deane et al., 2021) (Fielding et al., 2018), and only leukopenia was detected in other research (Razzaq et al., 2015). Most positive cases revealed no specific clinical singes or remarkable hematological abnormality with a complete absence ticks infestation that indicated asymptomatic or transient or recovered from mild infection.

Risk factors not revealed any significant differences between mares and stallions, and between Arabian and thoroughbred or crossbred horses, in addition, any horse ages group. This outcome is parallel with other’s (Mghirbi et al., 2012; Razzaq et al., 2015; dos Santos et al., 2019; Laamari et al., 2020; Drážovská et al., 2021; Öğüz, 2021), the females occurred slight more susceptible that disagreed with Pakistan research showed significant increase in males (Saleem, et al., 2018b).

CONCLUSION

This study is the first molecular detection of *Anaplasma phagocytophilum* in racehorses reared in Baghdad in Iraq. The clinical signs were observed and found vital signs within reference limits and jaundice which were the major signs that occurred in 28.57% of molecular-positive horses. The results provide evidence that a large number of horses are exposed to *A. phagocytophilum* and that this bacterium is present in this area. Examined blood smears microscopically which revealed 6.875% *Anaplasma phagocytophilum* morulae inside granulocytes mostly in neutrophils as large rounded intracytoplasmic inclusion bodies. Hematologically analyzed blood samples and illustrated parameters of red, white blood cells, and platelets count were non-significant differences in the 21 molecularly infected horses and anemia occurred in five cases. Susceptible to infection occurred higher in Mares at 14.29%, 4 years old at 18.75% and Arabian breed at 13.33%. PCR results were 21 samples (13.125%) had positive *Anaplasma phagocytophilum*, and the recording Phylogenetic tree had the highest similarity 98.81-99.76% to global isolates. Compatibility of our outcomes to global isolates with similar prevalence rates will facilitate applying universal protocols of control and treatment trials and using PCR techniques for early detection of infection, and management of the illness in horses in Iraq, as well as monitoring its transmission to the human population.

REFERENCES

